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1. Conventional formulation of Rytov approximation
The conventional formulation of ODT using Rytov approximation is described here. We first 
derive the Born approximation and then the conventional Rytov approximation using 
perturbation theory. The formula provided here is based on a previous study [1]. We introduce 
a dimensionless parameter 𝜆 and expand 𝑢 𝒓;𝒌𝑗

in  as the power series in 𝜆: 

𝑢(𝒓;𝒌𝑗
in) = 𝑢0(𝒓;𝒌𝑗

in) + 𝜆𝑢1(𝒓;𝒌𝑗
in) + 𝜆2𝑢2(𝒓;𝒌𝑗

in) + ⋯

=
𝑙

𝜆𝑙𝑢𝑙 𝒓;𝒌𝑗
in .

(S1)

We treat the scattering potential 𝑉(𝒓) as a perturbation: 𝑉(𝒓)→𝜆𝑉(𝒓). In this case, on 
substituting Eq. (S1) in Eq. (1), we obtain

𝑙
𝜆𝑙𝑢𝑙 𝒓;𝒌𝑗

in = 𝑢in 𝒓;𝒌𝑗
in + d𝒓′𝐺(𝒓 ― 𝒓′)𝜆𝑉(𝒓′)

𝑙
𝜆𝑙𝑢𝑙 𝒓′;𝒌𝑗

in . (S2)

We can solve Eq. 

(S2) by comparing the coefficients of each power of 𝜆.

Order 𝜆0: At order 𝜆0, we have

𝑢0 𝒓;𝒌𝑗
in = 𝑢in 𝒓;𝒌𝑗

in . (S3)

Order 𝜆1: At order 𝜆1, we have

𝑢1 𝒓;𝒌𝑗
in = d𝒓′𝐺(𝒓 ― 𝒓′)𝑉(𝒓′)𝑢0 𝒓′;𝒌𝑗

in

= d𝒓′𝐺(𝒓 ― 𝒓′)𝑉(𝒓′)𝑢in 𝒓′;𝒌𝑗
in . (S4)

The Born approximation of Eq. (1) is given by the first-order approximation of Eq. (S1). We 
set 𝜆→1 and obtain

𝑢 𝒓;𝒌𝑗
in ≅𝑢Born 𝒓;𝒌𝑗

in

≔𝑢0 𝒓;𝒌𝑗
in + 𝑢1 𝒓;𝒌𝑗

in

= 𝑢in 𝒓;𝒌𝑗
in + d𝒓′𝐺(𝒓 ― 𝒓′)𝑉(𝒓′)𝑢in 𝒓′;𝒌𝑗

in .
(S5)

Next, we derive the Rytov approximation of Eq. (1). We expand 𝑢 𝒓;𝒌𝑗
in  as a power series in 

𝜆, as follows:

𝑢(𝒓;𝒌𝑗
in) = exp 𝜙0(𝒓;𝒌𝑗

in) + 𝜆𝜙1(𝒓;𝒌𝑗
in) + 𝜆2𝜙2(𝒓;𝒌𝑗

in) + ⋯

= exp
𝑙

𝜆𝑙𝜙𝑙 𝒓;𝒌𝑗
in .

(S6)



We then equate Eq. 

(S2) and (S6), solve it by comparing coefficients of each power of 𝜆.

Order 𝜆0: At order 𝜆0, we have

𝜙0 𝒓;𝒌𝑗
in = ln 𝑢0 𝒓;𝒌𝑗

in . (S7)

Order 𝜆1: At order 𝜆1, we have

𝜙1 𝒓;𝒌𝑗
in =

𝑢1 𝒓;𝒌𝑗
in

𝑢0 𝒓;𝒌𝑗
in

. (S8)

The Rytov approximation of Eq. (1) is given by the first-order approximation of Eq. (S6). We 
set 𝜆→1 and obtain

𝑢 𝒓;𝒌𝑗
in ≅𝑢Rytov 𝒓;𝒌𝑗

in

≔ exp 𝜙0 𝒓;𝒌𝑗
in + 𝜙1 𝒓;𝒌𝑗

in

= 𝑢in 𝒓;𝒌𝑗
in exp

1
𝑢in 𝒓;𝒌𝑗

in
d𝒓′𝐺(𝒓 ― 𝒓′)𝑉(𝒓′)𝑢in 𝒓′;𝒌𝑗

in . (S9)

In this conventional formulation, the Rytov approximation is applied to coherent fields 𝑢(𝒓;
𝒌𝑗

in). The validity of Rytov approximation depends on the smoothness of the fields. Further, as 
field 𝑢(𝒓;𝒌𝑗

in) is vulnerable to MS owing to its high coherence, this conventional formulation 
becomes invalid when the sample shows MS.

2. Formulation of cMSS-Rytov
Here, we formulate cMSS-Rytov, such that the theory of ODT is compatible with the coherent 
MSS technique used as in CASS. We expand 𝑢 𝒓;𝒌𝑗

in  as a power series in 𝜆:

𝑢(𝒓;𝒌𝑗
in) = 𝑢0(𝒓;𝒌𝑗

in) + 𝜆𝑢1(𝒓;𝒌𝑗
in) + 𝜆2𝑢2(𝒓;𝒌𝑗

in) + ⋯

=
𝑙

𝜆𝑙𝑢𝑙 𝒓;𝒌𝑗
in .

(S10)

From Eq. (S3) and (S4), using the relationships 𝑢 𝒓;𝒌𝑗
in ≔𝑢 𝒓;𝒌𝑗

in exp ―i𝒌𝑗
in ⋅ 𝒓  and 𝑢in

𝒓;𝒌𝑗
in ≔𝑎0exp (i𝒌𝑗

in ⋅  𝒓), we obtain the following equations:

𝑢0 𝒓;𝒌𝑗
in = 𝑢0 𝒓;𝒌𝑗

in exp ―i𝒌𝑗
in ⋅ 𝒓 = 𝑎0, (S11)

𝑢1 𝒓;𝒌𝑗
in = 𝑎0 d𝒓′𝐺 𝒓 ― 𝒓′;𝒌𝑗

in 𝑉(𝒓′) .
(S12)

We expand 𝑈cMSS(𝒓) as a power series in 𝜆:

𝑈cMSS(𝒓) = 𝑈cMSS
0 (𝒓) + 𝜆𝑈cMSS

1 (𝒓) + 𝜆2𝑈cMSS
2 (𝒓) + ⋯

=
𝑙

𝜆𝑙𝑈cMSS
𝑙 (𝒓) . (S13)

Substituting Eq. (S13) and (S10) in Eq. (2), we obtain 



𝑙
𝜆𝑙𝑈cMSS

𝑙 (𝒓) =
1

𝑁in 𝑗 𝑙
𝜆𝑙𝑢𝑙 𝒓;𝒌𝑗

in . (S14)

We can now solve Eq. 

(S14) by comparing coefficients of each power of 𝜆.

Order 𝜆0: At order 𝜆0, we have

𝑈cMSS
0 (𝒓) =

1
𝑁in 𝑗

𝑢0 𝒓;𝒌𝑗
in = 𝑎0, (S15)

obtained using Eq. (S11).

Order 𝜆1: At order 𝜆1, we have

𝑈cMSS
1 (𝒓) =

1
𝑁in 𝑗

𝑢1 𝒓;𝒌𝑗
in

= 𝑎0 d𝒓′𝑉(𝒓′)
1

𝑁in
 

𝑗
𝐺 𝒓 ― 𝒓′;𝒌𝑗

in , (S16)

obtained using Eq. (S12). 

The Born approximation of Eq. (2) is given by the first-order approximation of Eq.(S13). We 
set 𝜆→1 and obtain 𝑈cMSS

Born (𝒓):

𝑈cMSS
Born (𝒓)≔𝑈cMSS

0 (𝒓) + 𝑈cMSS
1 (𝒓)

= 𝑎0 + 𝑎0 d𝒓′𝑉(𝒓′)
1

𝑁in
 

𝑗
𝐺 𝒓 ― 𝒓′;𝒌𝑗

in .
(S17)

Next, we derive the Rytov approximation of Eq. (2). We expand 𝑈cMSS(𝒓) as a power series in 
𝜆, as follows:

𝑈cMSS(𝒓) = exp 𝛷0(𝒓) + 𝜆𝛷1(𝒓) + 𝜆2𝛷2(𝒓) + ⋯

= exp
𝑙

𝜆𝑙 𝛷𝑙(𝒓) . (S18)

We then equate Eq. (S13) and (S18) and solve it by comparing coefficients of each power of 𝜆.

Order 𝜆0: At order 𝜆0, we have

𝛷0(𝒓) = ln 𝑈cMSS
0 (𝒓) . (S19)

Order 𝜆1: At order 𝜆1, we have

𝛷1(𝒓) =
𝑈cMSS

1 (𝒓)
𝑈cMSS

0 (𝒓)
. (S20)

The Rytov approximation of Eq. (2) is given by the first-order approximation of Eq. (S18). We 
set 𝜆→1 and obtain 𝑈cMSS

Rytov(𝒓):



𝑈cMSS
Rytov(𝒓)≔ exp(𝛷0(𝒓) + 𝛷1(𝒓))

= 𝑎0exp d𝒓′𝑉(𝒓′)
1

𝑁in
 

𝑗
𝐺 𝒓 ― 𝒓′;𝒌𝑗

in . (S21)

In this formulation, we applied the Rytov approximation to coherently MS-suppressed fields 
𝑈cMSS(𝒓). As cMMS techniques suppress MS through coherent summation of fields 𝑢 𝒓;𝒌𝑗

in , 
𝑈cMSS(𝒓) is spatially smoother than 𝑢 𝒓;𝒌𝑗

in . Based on this characteristic, Rytov 
approximation can be applied to 𝑈cMSS(𝒓) even if some MS exists. Therefore, the validity of 
the Rytov approximation expands from weak-scattering samples to MS samples owing to this 
formulation.

3. Formulation of iMSS-Rytov
We formulate iMSS-Rytov such that the theory of ODT is compatible with the iMSS techniques 
by using QPGI. QPGI is given by the phase of 𝑊iMSS(𝒓) in Eq. (4). We expand 𝑊iMSS(𝒓) as a 
power series in 𝜆:

𝑊iMSS(𝒓) = 𝑊0
iMSS(𝒓) + 𝜆𝑊1

iMSS(𝒓) + 𝜆2𝑊2
iMSS(𝒓) + ⋯

=
𝑙

𝜆𝑙𝑊𝑙
iMSS(𝒓) . (S22)

Substituting Eq. (S10) and (S22) in Eq. (4), we obtain

𝑙
𝜆𝑙𝑊𝑙

iMSS(𝒓) =
1

𝑁in 𝑗 𝑙
𝜆𝑙𝑢𝑙 𝒓;𝒌𝑗

in
𝑚

𝜆𝑚𝑢∗
𝑚 𝒓 + 𝛿𝒓;𝒌𝑗

in . (S23)

We can now solve Eq. (S23) by comparing coefficients of each power of 𝜆.

Order 𝜆0: At order 𝜆0, we have

𝑊0
iMSS(𝒓) =

1
𝑁in 𝑗

𝑢0 𝒓;𝒌𝑗
in 𝑢∗

0 𝒓 + 𝛿𝒓;𝒌𝑗
in = 𝑎2

0. (S24)

Order 𝜆1: At order 𝜆1, we have

𝑊1
iMSS(𝒓) =

1
𝑁in 𝑗

𝑢1 𝒓;𝒌𝑗
in 𝑢∗

0 𝒓 + 𝛿𝒓;𝒌𝑗
in + 𝑢0 𝒓;𝒌𝑗

in 𝑢∗
1 𝒓 + 𝛿𝒓;𝒌𝑗

in

= d𝒓′
𝑎2

0
𝑁in 𝑗

𝐺 𝒓 ― 𝒓′;𝒌𝑗
in + 𝐺∗ 𝒓 + 𝛿𝒓 ― 𝒓′;𝒌𝑗

in 𝑉(𝒓′) . (S25)

The Born approximation of Eq. (4) is given by the first-order approximation of Eq. (S22)(S23). 
We set 𝜆→1 and obtain 𝑊iMSS

Born(𝒓):

𝑊iMSS
Born(𝒓)≔𝑊0

iMSS(𝒓) + 𝑊1
iMSS(𝒓)

= 𝑎2
0 + d𝒓′

𝑎2
0

𝑁in 𝑗
𝐺 𝒓 ― 𝒓′;𝒌𝑗

in + 𝐺∗ 𝒓 + 𝛿𝒓 ― 𝒓′;𝒌𝑗
in 𝑉(𝒓′) . (S26)

Next, we derive the Rytov approximation of Eq. (4). We expand 𝑊iMSS(𝒓) as a power series in 
𝜆, as follows:



𝑊iMSS(𝒓) = exp 𝛹0(𝒓) + 𝜆𝛹1(𝒓) + 𝜆2𝛹2(𝒓) + ⋯

= exp
𝑙

𝜆𝑙 𝛹𝑙(𝒓) .
(S27)

We then equate Eq. (S22) and (S27) and solve it by comparing coefficients of each power of 𝜆.

Order 𝜆0: At order 𝜆0, we have

𝛹0(𝒓) = ln 𝑊0
iMSS(𝒓) . (S28)

Order 𝜆1: At order 𝜆1, we have

𝛹1(𝒓) =
𝑊1

iMSS(𝒓)
𝑊0iMSS(𝒓)

. (S29)

The Rytov approximation of Eq. (4) is given by the first-order approximation of Eq. (S27). We 
set 𝜆→1 and obtain 𝑊iMSS

Rytov(𝒓):

𝑊iMSS
Rytov(𝒓)≔ exp(𝛹0(𝒓) + 𝛹1(𝒓))

= 𝑎2
0exp d𝒓′

1
𝑁in 𝑗

𝐺 𝒓 ― 𝒓′;𝒌𝑗
in + 𝐺∗ 𝒓 + 𝛿𝒓 ― 𝒓′;𝒌𝑗

in 𝑉(𝒓′) . (S30)

4. Formulation of pMSS-Rytov
Here, we formulate pMSS-Rytov, which balances cMSS-Rytov and iMSS-Rytov. We show 
that the relationship between 𝑊pMSS(𝒓) and 𝑉(𝒓) is the same as that between 𝑊iMSS(𝒓) and 𝑉
(𝒓). From Eq. (3), the Rytov approximation of 𝑊cMSS(𝒓) is 

𝑊cMSS
Rytov(𝒓)≔𝑈cMSS

Rytov(𝒓)𝑈cMSS
Rytov

∗
(𝒓 + 𝛿𝒓)

= 𝑎2
0exp d𝒓′

1
𝑁in 𝑗

𝐺 𝒓 ― 𝒓′;𝒌𝑗
in + 𝐺∗ 𝒓 + 𝛿𝒓 ― 𝒓′;𝒌𝑗

in 𝑉(𝒓′) . (S31)

This relationship between 𝑊cMSS(𝒓) and 𝑉(𝒓) is the same as that between 𝑊iMSS(𝒓) and 𝑉(𝒓). 
𝑊pMSS(𝒓) lies in between 𝑊cMSS(𝒓) and 𝑊iMSS(𝒓), such that 𝑊pMSS(𝒓) also has the same 
relationship with 𝑉(𝒓):

𝑊pMSS(𝒓)≅𝑊pMSS
Rytov(𝒓)

= 𝑎2
0exp d𝒓′

1
𝑁in 𝑗

𝐺 𝒓 ― 𝒓′;𝒌𝑗
in + 𝐺∗ 𝒓 + 𝛿𝒓 ― 𝒓′;𝒌𝑗

in 𝑉(𝒓′) . (S32)

5. Modification to Green’s function
5.1 Source-free Green’s function

The Green’s function must be modified because a digitally propagated field is different from 
the solution of the LS equation. The solution of the LS equation, 𝑢 𝒓;𝒌𝑗

in , has some sources in 
the field: ∇2 + 𝑘2

b 𝑢 𝒓;𝒌𝑗
in = ―𝑉(𝒓)𝑢(𝒓;𝒌𝑗

in). However, we use backpropagated fields from 
a detector to reconstruct the RI map, and the backpropagated field is source-free. Therefore, we 



need to determine the modified Green’s function, which gives the relationship between the 
backpropagated field and the scattering potential.

We define the field as 𝑢B 𝒓;𝒌𝑗
in , which is the backpropagated field of all the outgoing 

components of 𝑢 𝒓;𝒌𝑗
in . Note that 𝑢B 𝒓;𝒌𝑗

in  must be a source-free field: ∇2 + 𝑘2
b 𝑢B 𝒓;𝒌𝑗

in
= 0.To derive the modified LS equation for 𝑢B 𝒓;𝒌𝑗

in , we consider the time-reversed situation 
in Eq. (1) (Figs. S1(a), (b)). In this time-reversed situation, the resulting field has the same 
spatial distribution as 𝑢 𝒓;𝒌𝑗

in  but the opposite time-development direction because of the time 
symmetry of the wave equation. In other words, when we set the incident wave as 𝑢B∗ 𝒓;𝒌𝑗

in , 
the total field resulting from scattering potential 𝑉∗(𝒓) is equal to 𝑢∗ 𝒓;𝒌𝑗

in :

𝑢∗ 𝒓;𝒌𝑗
in = 𝑢B∗ 𝒓;𝒌𝑗

in + 𝐺(𝒓 ― 𝒓′)𝑉∗(𝒓′)𝑢∗ 𝒓′;𝒌𝑗
in d𝒓′ . (S33)

The complex conjugate operation corresponds to a time-reversal operation. Taking the complex 
conjugate of this equation and equating it with Eq. (1), we obtain

𝑢B 𝒓;𝒌𝑗
in = 𝑢in 𝒓;𝒌𝑗

in + 𝐺(𝒓 ― 𝒓′) ― 𝐺∗(𝒓 ― 𝒓′) 𝑉(𝒓′)𝑢 𝒓′;𝒌𝑗
in d𝒓′ , (S34)

where we assume that 𝑉(𝒓) is a real value. This assumption generally holds when the sample 
is a biological specimen. Here, ∇2 + 𝑘2

b 𝑢B 𝒓;𝒌𝑗
in = 0 holds true because ∇2 + 𝑘2

b 𝑢in = 0, 
∇2 + 𝑘2

𝑏 𝐺(𝒓 ― 𝒓′) ― 𝐺∗(𝒓 ― 𝒓′) = 0, which means that 𝑢B 𝒓;𝒌𝑗
in  is a source-free field. We 

show examples of 𝑢 𝒓;𝒌𝑗
in  and 𝑢B 𝒓;𝒌𝑗

in  in Figs. S1(d), (e).

Fig. S1. Scheme of modified Green’s function of our methods. (a) Time-forward scattering situation. (b) Time-reversed 
situation of (a). The incident field is 𝑢B, and the resulting field is 𝑢∗, such that the special distribution of the resulting 
field is the same as in (a), except for the complex conjugate operation. (c) RI map used in (d) and (e). (d) amplitude 



distribution of 𝑢 determined from the RI map given in (c). (e) amplitude distribution of 𝑢B determined from the RI map 
given in (c).

5.2 Limited aperture of objective lens

We must consider the limited aperture of an objective lens. The 3D pupil function of the 
objective lens, whose numerical aperture is 𝑁𝐴, is given as follows:

𝑃(𝒌) = 𝑐𝑖𝑟𝑐
𝑘2

𝑥 + 𝑘2
𝑦

(𝑘0𝑁𝐴)2 𝐻(𝑘𝑧), (S35)

where 𝑐𝑖𝑟𝑐(𝑥) = 1 if 𝑥 ≤ 1 and 0 otherwise, and 𝐻(𝑥) = 1 if 𝑥 ≥ 0 and 0 otherwise. From 
Eqs. (S34) and (S35), we define the modified Green’s function 𝐺m:

𝐺m(𝒓)≔ ℱ―1(𝑃) ∗ (𝐺 ― 𝐺∗) (𝒓), (S36)

where ℱ―1 is the inverse 3D Fourier transform operator. 

5.3 Modification of Green’s functions in cMSS-Rytov, iMSS-Rytov, and pMSS-Rytov

We modify Eq. (S21), (S30), and (S32) using Eq. (S36):

𝑈cMSS
Rytov 𝒓;𝒌𝑗

in = 𝑎0exp d𝒓′𝑉(𝒓′)
1

𝑁in
 

𝑗
𝐺m 𝒓 ― 𝒓′;𝒌𝑗

in , (S37)

𝑊iMSS
Rytov(𝒓) =

𝑎2
0exp d𝒓′ 

1
𝑁in 𝑗

𝐺m 𝒓 ― 𝒓′;𝒌𝑗
in + 𝐺m

∗ 𝒓 + 𝛿𝒓 ― 𝒓′;𝒌𝑗
in 𝑉(𝒓′) , (S38)

𝑊pMSS
Rytov(𝒓) =

𝑎2
0exp d𝒓′ 

1
𝑁in 𝑗

𝐺m 𝒓 ― 𝒓′;𝒌𝑗
in + 𝐺m

∗ 𝒓 + 𝛿𝒓 ― 𝒓′;𝒌𝑗
in 𝑉(𝒓′) . (S39)

Here, 𝐺m 𝒓 ― 𝒓′;𝒌𝑗
in ≔𝐺m(𝒓 ― 𝒓′)exp ―i𝒌𝑗

in ⋅ (𝒓 ― 𝒓′) . We also define 

𝒢≔
1

𝑁in
 

𝑗
𝐺m 𝒓 ― 𝒓′;𝒌𝑗

in , (S40)

𝒢d≔
1

𝑁in
 

𝑗
𝐺m 𝒓 ― 𝒓′;𝒌𝑗

in + 𝐺m
∗ 𝒓 + 𝛿𝒓 ― 𝒓′;𝒌𝑗

in . (S41)

6. Deconvolution algorithm
6.1 cMSS-Rytov

cMSS-Rytov reconstructs the RI map from confocal QPI images by deconvolution, whose 
kernel is given by the summation of modified Green’s functions (Supplementary Section 5). 
Here, let G, v, and ϕ be the kernel given by Eq. (S41), vector representation of the scattering 
potential, and vector representation of the 3D confocal QPI image, respectively. We also 
introduce a cropping operator [2] D to avoid aliasing, as the kernel is heavy-tailed. The 
estimation of v from ϕ is given by the following optimization problem:



min
v ≥ 0

‖ϕ ― DGv‖2
2 . (S42)

This problem was solved using the alternating direction method of multipliers (ADMM) [3]. 
The program was stopped after 50 iterations.

6.2 iMSS-Rytov and pMSS-Rytov

iMSS-Rytov and pMSS-Rytov reconstruct the RI distribution from QPGI images by 
deconvolution. Here, let Gd

𝑥, Gd
𝑦, ψ𝑥, and ψ𝑦 be the discretized derivative of the 3D Green’s 

function with respect to x, the discretized derivative of the 3D Green’s function with respect to 
y (Eq. (S41)), vector representation of QPGI differentiated with respect to x, and vector 
representation of QPGI differentiated with respect to y, respectively. Unlike QPI, QPGI does 
not have a constant component owing to its differentiation operation; hence, the estimated v is 
also uncertain about its constant value. To address this problem, the estimation of v was 
performed using the following optimization problem:

min
v ≥ 0

1
2‖ψ𝑥 ― DGd

𝑥v‖2
2 +

1
2‖ψ𝑦 ― DGd

𝑦v‖2

2
+

𝜉
2‖v‖1.

(S43)

The L1-norm term was introduced to limit the range of v to near-zero values. This term and the 
nonnegativity constraint help the solution converge to the accurate solution. If 𝜉 is too large, 
the estimated RI distribution can be different from the exact values. We chose 𝜉 = 0.1 for 
simulation and 0.2 for experiments. The shear amount of QPGI is set as 𝜆0/7.5 in simulations 
and 420 nm in experiments, respectively. The optimization problem was solved using ADMM, 
and the program was stopped after 50 iterations.

7. Pseudo code for the reconstruction of phase maps through the cMSS, 
iMSS and pMSS techniques

Tables S1, S2 and S3 present the pseudo-code for the reconstructions of phase maps ∠𝑈cMSS

(𝒓) , ∠𝑊iMSS(𝒓) and ∠𝑊pMSS(𝒓) from measured complex fields, respectively. 

Table S1. Pseudo code for ∠𝑼𝐜𝐌𝐒𝐒(𝒓) calculation

Input 

𝑢𝑗(𝝆)
𝑁in

𝑗=1 : Measured complex fields at initial position z=0, where 𝝆 = (𝑥,𝑦) and 𝑁in is the total number of 
incident angles

𝒌𝑗
in

𝑁in

𝑗=1 : 3D incident wavevectors of 𝑢𝑗(𝝆)
𝑁in

𝑗=1 
Δ𝑧 : step size in z direction
𝑁layer : the number of layers in z direction
𝑘b: the wavenumber in the medium

Initialization
𝑈cMSS(𝝆,  𝑛Δ𝑧)

𝑁layer

𝑛=1 = 0 

1. for 𝑛←1 𝑡𝑜 𝑁layer do 
2.       for 𝑗←1 𝑡𝑜 𝑁in do
3.             𝒓←(𝝆,𝑛Δ𝑧)
4.             𝑢prop(𝝆)←ℱ―1 ℱ 𝑢𝑗(𝝆) exp i 𝑘2

b ― ‖𝒌T‖2
2 𝑛Δ𝑧      

(Digital propagation, where 𝒌T is the 2D wavevector coordinates corresponding to 𝝆 
and ℱ is Fourier transform operator)

5.             𝑢prop(𝝆)←𝑢prop(𝝆)exp i𝒌𝑗
in ∙ 𝒓

6.             𝑈cMSS(𝝆,  𝑛Δ𝑧)←𝑈cMSS(𝝆,  𝑛Δ𝑧) + 𝑢prop(𝝆)
7.       𝑈cMSS(𝝆,  𝑛Δ𝑧)←𝑈cMSS(𝝆,  𝑛Δ𝑧)/𝑁in



8.       ∠𝑈cMSS(𝝆,  𝑛Δ𝑧)←PhaseUnwrapping (Angle (𝑈cMSS(𝝆,  𝑛Δ𝑧)))

Return
∠𝑈cMSS(𝝆,  𝑛Δ𝑧)

𝑁layer

𝑛=1  

Table S2. Pseudo code for ∠𝑾𝐢𝐌𝐒𝐒(𝒓) calculation

Input 

𝑢𝑗(𝝆)
𝑁in

𝑗=1 : Measured complex fields at initial position z=0, where 𝝆 = (𝑥,𝑦) and 𝑁in is the total number of 
incident angles

𝒌𝑗
in

𝑁in

𝑗=1 : 𝑁in 3D incident wavevectors of 𝑢𝑗(𝝆)
𝑁in

𝑗=1 
𝛿𝝆 : 2D shear vector
Δ𝑧 : step size in z direction
𝑁layer : the number of layers in z direction
𝑘b: the wavenumber in the medium

Initialization
𝑊iMSS(𝝆,  𝑛Δ𝑧)

𝑁layer

𝑛=1 = 0 

1. for 𝑛←1 𝑡𝑜 𝑁layer do 
2.       for 𝑗←1 𝑡𝑜 𝑁in do
3.             𝒓←(𝝆,𝑛Δ𝑧)
4.             𝑢prop(𝝆)←ℱ―1 ℱ 𝑢𝑗(𝝆) exp i 𝑘2

b ― ‖𝒌T‖2
2 𝑛Δ𝑧      

(Digital propagation, where 𝒌T is the 2D wavevector coordinates corresponding to 𝝆 
and ℱ is Fourier transform operator)

5.             𝑢prop(𝝆)←𝑢prop(𝝆)exp i𝒌𝑗
in ∙ 𝒓

6.             𝑊iMSS(𝝆,  𝑛Δ𝑧)←𝑊iMSS(𝝆,  𝑛Δ𝑧) + 𝑢prop(𝝆)𝑢∗
prop(𝝆 + 𝛿𝝆)

7.       𝑊iMSS(𝝆,  𝑛Δ𝑧)←𝑊iMSS(𝝆,  𝑛Δ𝑧)/𝑁in

8.       ∠𝑊iMSS(𝝆,  𝑛Δ𝑧)←Angle (𝑊iMSS(𝝆,  𝑛Δ𝑧))

Return
∠𝑊iMSS(𝝆,  𝑛Δ𝑧)

𝑁layer

𝑛=1  

Table S3. Pseudo code for ∠𝑾𝐩𝐌𝐒𝐒(𝒓) calculation

Input 

𝑢𝑗(𝝆)
𝑁in

𝑗=1 : Measured complex fields at initial position z=0, where 𝝆 = (𝑥,𝑦) and 𝑁in is the total number of 
incident angles

𝒌𝑗
in

𝑁in

𝑗=1 : 3D incident wavevectors of 𝑢𝑗(𝝆)
𝑁in

𝑗=1 
𝛿𝝆 : 2D shear vector
𝛾 : tuning parameter
Δ𝑧 : step size in z direction
𝑁layer : the number of layers in z direction
𝑘b: the wavenumber in the medium

Initialization
𝑈cMSS(𝝆,  𝑛Δ𝑧)

𝑁layer

𝑛=1 = 0 
𝑊iMSS(𝝆,  𝑛Δ𝑧)

𝑁layer

𝑛=1 = 0 
𝑊M(𝝆,  𝑛Δ𝑧)

𝑁layer

𝑛=1 = 0 

1. for 𝑛←1 𝑡𝑜 𝑁layer do 
2.       for 𝑗←1 𝑡𝑜 𝑁in do
3.             𝒓←(𝝆,𝑛Δ𝑧)



4.             𝑢
𝑗
prop(𝝆)←ℱ―1 ℱ 𝑢𝑗(𝝆) exp i 𝑘2

b ― ‖𝒌T‖2
2 𝑛Δ𝑧      

(Digital propagation, where 𝒌T is the 2D wavevector coordinates corresponding to 𝝆 
and ℱ is Fourier transform operator)

5.             𝑢
𝑗
prop(𝝆)←𝑢𝑗

prop(𝝆)exp i𝒌𝑗
in ∙ 𝒓

6.             𝑈cMSS(𝝆,  𝑛Δ𝑧)←𝑈cMSS(𝝆,  𝑛Δ𝑧) + 𝑢𝑗
prop(𝝆)

7.             𝑊iMSS(𝝆,  𝑛Δ𝑧)←𝑊iMSS(𝝆,  𝑛Δ𝑧) + 𝑢𝑗
prop(𝝆)𝑢𝑗∗

prop(𝝆 + 𝛿𝝆)
8.       𝑊iMSS(𝝆,  𝑛Δ𝑧)←𝑊iMSS(𝝆,  𝑛Δ𝑧)/𝑁in

9.       𝑈cMSS(𝝆,  𝑛Δ𝑧)←𝑈cMSS(𝝆,  𝑛Δ𝑧)/𝑁in

10.       for 𝑗←1 𝑡𝑜 𝑁in do
11.             𝑢M

prop(𝝆)← 𝑢𝑗
prop(𝝆) ― 𝑈cMSS(𝝆,  𝑛Δ𝑧)

12.             𝑊M(𝝆,  𝑛Δ𝑧)←𝑊M(𝝆,  𝑛Δ𝑧) + 𝑢M
prop(𝝆)𝑢M∗

prop(𝝆 + 𝛿𝝆)
13.       𝑊M(𝝆,  𝑛Δ𝑧)←𝑊M(𝝆,  𝑛Δ𝑧)/𝑁in

14.       𝑊pMSS(𝝆,  𝑛Δ𝑧)←𝑊iMSS(𝝆,  𝑛Δ𝑧) ―𝛾𝑊M(𝝆,  𝑛Δ𝑧)
15.       ∠𝑊pMSS(𝝆,  𝑛Δ𝑧)←Angle (𝑊pMSS(𝝆,  𝑛Δ𝑧))

Return
∠𝑊pMSS(𝝆,  𝑛Δ𝑧)

𝑁layer

𝑛=1  

8. Numerical simulation of cell phantom
To validate that our approach visualizes the subcellular structure of cell samples, we applied 
our methods to a cell phantom immersed in water (RI 𝑛 = 1.333). The cell phantom (Fig. S2(a)) 
comprises the cytoplasm (𝑛 = 1.360), nucleus (𝑛 = 1.350), nucleolus (𝑛 = 1.365), and several 
small organelles (𝑛 = 1.370), within a volume of 128 × 128 × 128 voxels with 𝜆0/7.5 
resolution. The simulated fields with an illumination angle 𝜃𝑥, 𝜃𝑦 = 0°, 43.4° and 
reconstruction results of our proposed methods are shown in Figs. S2(b) and (c). All methods 
succeeded in visualizing subcellular structures inside the cell phantom. Therefore, our methods 
have the resolving power to visualize the subcellular structure.

Fig. S2. Simulations using a cell phantom. (a) x-y and x-z cross-sections of the ground truth of the RI map of the cell. 
(b) Simulated fields with an illumination angle 𝜃𝑥, 𝜃𝑦 = 0°, 43.4°. (c) x-y and x-z cross-sections of RI distributions 
obtained by Conventional Rytov, cMSS-Rytov, iMSS-Rytov, and pMSS-Rytov, respectively. Scale bars: 5𝜆0.



9. Comparison of forward models
We evaluated the forward model accuracy of each model using the model in Fig. 3.  The left 
column of Fig.S3(a) shows true fields calculated using the SEAGLE forward model. 𝑢 𝒓;𝒌𝑗

in  
was calculated using the SEAGLE forward model, and ∠𝑈cMSS(𝒓), ∠𝑊iMSS(𝒓), and ∠𝑊pMSS

(𝒓) were calculated from 𝑢 𝒓;𝒌𝑗
in   using Eqs. (2), (4) and (7), respectively. The right column 

of Fig.S3(a) shows fields calculated using each forward model. 𝑢Rytov 𝒓;𝒌𝑗
in , ∠𝑈cMSS

Rytov(𝒓), ∠
𝑊iMSS

Rytov(𝒓), and ∠𝑊pMSS
Rytov(𝒓) were calculated using Eqs. (S9), (S37), 

(S38), and (S39), respectively. Fig.S3(b) shows the error of these fields. We also quantitatively 
evaluated the performance of each method with the normalized data fit (NDF) defined as

𝑁𝐷𝐹(𝑦true,𝑦recon)≔
‖𝑦recon ― 𝑦true‖2

2
‖𝑦true‖2

2

(S44)

where 𝑦true is the true field calculated using results of SEAGLE and 𝑦recon is calculated using 
each forward model. Hence, (𝑦true, 𝑦recon) = 𝑢 𝒓;𝒌𝑗

in ,𝑢Rytov 𝒓;𝒌𝑗
in ,  

∠𝑈cMSS(𝒓),∠𝑈cMSS
Rytov(𝒓) , ∠𝑊iMSS(𝒓),∠𝑊iMSS

Rytov(𝒓) , ∠𝑊pMSS(𝒓),∠𝑊pMSS
Rytov(𝒓) . The NDF 

of conventional Rytov, cMSS-Rytov, iMSS-Rytov and pMSS-Rytov was 0.152, 0.004, 0.144 
and 0.086, respectively. According to the NDF, the three proposed methods have higher 
forward-model accuracy than conventional Rytov. 

Fig. S3. The forward model accuracy of each method. (a) The left column of Fig.S3(a) shows true fields calculated 
using the SEAGLE forward model. The right column of Fig.S3(a) shows fields calculated using each forward model. 
(b) The error of fields shown in (a).  The normalized data fit (NDF) of conventional Rytov, cMSS-Rytov, iMSS-Rytov 
and pMSS-Rytov was 0.152, 0.004, 0.144 and 0.086, respectively.



10. Experimental setup
We constructed a transmission-mode interferometric microscope with a Mach–Zehnder 
configuration (Fig. S4). We used a He–Ne laser (632.8 nm, 5 mW) as the light source. The light 
was coupled into a single-mode fiber and split into a sample beam and a reference beam using 
a beam splitter (BS1). The sample beam was illuminated onto the sample at various angles of 
incidence using a 2D scanning mirror (Optotune). We set the scanning pattern as a grid pattern, 
such that the numerical aperture of incidence equaled 0.9. The sample was placed between a 
condenser lens (OB1, Olympus, 60×, 1.0NA, water immersion) and an objective lens (OB2, 
Olympus, 60×, 1.0NA, water immersion). The scattered light from the sample was projected 
onto a CMOS camera (GO-2400M-USB, JAI) using a 4f system consisting of OB1 and a tube 
lens (f = 125 mm) after combining with the reference beam at another beam splitter (BS2). On 
the camera plane, the sample beam interfered with the reference beam, which was slightly tilted 
against the propagation direction of the sample beam to generate off-axis interferograms. To 
reconstruct a 3D RI tomogram, we recorded 441 holograms of the sample at a frame rate of 62 
fps, which required 7 s.

Fig. S4. Experimental setup. BS1, BS2: beam splitters. The magnification from the sample plane to the camera was 
41.7×.

11. Preparation of cellular samples
The human breast cancer cell line, MCF-7, was obtained from the European Collection of Cell 
Cultures and cultured in an advanced minimum essential medium (Gibco) supplemented with 
2.5% (v/v) fetal bovine serum (FBS, Gibco), 100 U/mL of penicillin, 100 µg/mL of 
streptomycin, and 292 µg/mL of L-glutamine (1× Penicillin-Streptomycin-Glutamine, Gibco). 
The human hepatoma HepG2 cell line (JCRB1054) [4] was obtained from the Japanese 
Collection of Research Bioresources and cultured in Dulbecco’s modified Eagle’s medium 
(DMEM, Gibco) supplemented with 10% (v/v) FBS (Gibco) and 1× penicillin-streptomycin-
glutamine (Gibco). Multicellular spheroids were formed using a 3D cell culture container, the 
EZSPHERE 6-well plate (AGC Techno Glass). MCF-7 cells were seeded at 35,000 cells per 
well in 2 mL of the culture medium and incubated for 1 d to allow spheroid formation. HepG2 
cells were seeded at 30,000 cells per well in 2 mL of the culture medium and incubated for 2 d 
to form spheroids. To induce lipid-droplet formation in HepG2 spheroids, the medium was 
replaced with phenol-red-free DMEM (Gibco) containing 1% (w/v) fatty-acid-free bovine 
serum albumin (BSA, FUJIFILM Wako Pure Chemical) and 0.5 mM sodium oleate (Nacalai 
Tesque) 1 d after seeding, and the spheroids were further cultured for 1 d. All cell samples were 
cultured at 37 ℃ in 5% CO2 humidified atmosphere. The spheroids were washed in phosphate-



buffered saline (Gibco) or Hanks’ balanced salt solution (Gibco) and collected via 
centrifugation at 150 × g for 3 min.

12. Numerical aberration estimation
In general, the aberration of an optical system is expressed as a phase map in the pupil plane. 
In most cases, the phase map is expressed as the sum of orthogonal modes, such as Zernike 
polynomials. Our strategy to identify the system aberration is to automatically estimate the 
coefficients of Zernike polynomials that maximize a sharpness metric calculated from 
aberration corrected images. As the metric to determine the coefficients, we used QPGI image 
given by Eq. (4), which is given by the incoherent summation of the angle-scanned complex 
fields. We define the sharpness metric 𝑆 using QPGI as follows:

𝑆≔
𝒓

|∠𝑊iMSS(𝒓)|3. (S45)

Using this metric, we estimated 4th to 28th-order coefficients of Zernike polynomials. The 
order of Zernike polynomials follows  Noll’s sequential indices [5]. To automatically optimize 
the coefficients, we used the particle swarm optimization (PSO) algorithm [6]. The number of 
particles of PSO was set to 100, and the particle parameters were initialized with a Gaussian 
distribution with standard deviation 𝜎=1. Two-hundred iterations of PSO were performed. 
Polystyrene beads were used as the target image for the optimization. Figures S5(a) and (b) 
show the estimated aberration map and coefficients of Zernike polynomials, respectively. 
Figure S5(c) shows the QPGI image of a polystyrene bead used as the target image before and 
after aberration correction, respectively. Compared to the former, the latter is sharper and has 
higher peak phase values. This result indicates that aberration correction was successful. Using 
the estimated aberration map, we also performed aberration correction to the image of an MCF-
7 cell used in Fig. 5. Figs. S5(d) and (e) show the MIPs of the RI distributions before and after 
aberration correction. In the case without aberration correction, the RI map by conventional 
Rytov (the left column of Figs. S5(d)) shows a nonuniform distribution with high values in the 
upper-half and low values in the lower-half of z-direction. On the contrary, the RI distribution 
by conventional Rytov with aberration correction (the left column of Figs. S5(e)) is more 
uniform. In addition, in both the conventional Rytov and the proposed methods, the RI 
distributions after aberration correction visualize the detailed intracellular structures more 
successfully (Figs. S5(e)) compared to the case without aberration correction (Fig. S5(d)). 



Fig. S5. Estimation of aberration of the optical system and the aberration effects on reconstructed RI distributions. (a) 
The estimated aberration maps. Scale bar, 𝑘𝑜𝑁𝐴. (b) The estimated the 4th to 28th-order coefficients of Zernike 
polynomials following the convention of Noll’s sequential indices. (c) QPGI images of a polystyrene bead before and 
after aberration correction. (d-e) The RI distribution of an MCF-7 cell used in Fig. 5 with and without aberration 
correction, respectively. 

13. Complex fields of captured data in experiments

Figure S.6 shows complex fields with incident angles (𝜃𝑥, 𝜃𝑦) = (0.0°, 0.0°), ( ― 27.0°, 7.2°) 
of the samples shown in Figs. 5, 6, 7. These images are reconstructed by digital holographic 
technique from raw intensity images to complex fields. The phase images of multicellular 
spheroids contain lots of discontinuities of the phase, which leads to the loss of the image 
fidelity of reconstructed RI distributions.



Fig. S6. Complex fields with incident angles (𝜃𝑥, 𝜃𝑦) = (0.0°, 0.0°), ( ― 27.0°, 7.2°) of the samples in Fig. 5, 6, 7. 
Scale bars: 10 μm

14. Phase distributions of captured data in experiments

Figure S.7 shows phase distributions, ∠𝑈cMSS(𝒓),  ∠𝑊iMSS(𝒓) and ∠𝑊pMSS(𝒓), of the 
samples shown in Figs. 5, 6 and 7. These images are calculated by Eqs. (2), (4) and (7) from 
complex fields shown in Fig. S6. ∠𝑈cMSS(𝒓) has many phase discontinuities around the edge 
of the samples due to SIA of spheroids. On the other hand, ∠𝑊iMSS(𝒓) and ∠𝑊pMSS(𝒓) do not 
have such phase discontinuities.



Fig. S7. Phase distributions, ∠𝑈cMSS(𝒓),  ∠𝑊iMSS(𝒓) and ∠𝑊pMSS(𝒓), of the samples shown in Figs. 5, 6, 7. Scale bars: 
10 μm

15. RI distributions of HepG2 reconstructed by conventional Rytov
We present the RI maps of normally cultured and oleic-acid-treated HepG2 spheroids obtained 
by conventional Rytov approximation (Fig. S8). According to Fig. S8, conventional Rytov 
approximation failed to visualize lipid-droplet structures that can be observed by pMSS-Rytov, 
as shown in Fig. 7.



Fig. S8. 3D RI reconstruction of a multicellular HepG2 spheroid under normal culture conditions and oleic acid 
induction reconstructed by Conventional Rytov. (a-b) MIPs in two different planes and x-y cross section along the 
white dotted line in (a) of the normally cultured HepG2 spheroid. (c-d) MIPs in two different planes and x-y cross 
section along the white dotted line in (d) of the oleic-acid-treated HepG2 spheroid. The lipid droplets observed in Fig. 
7 are hard to recognize in this figure owing to the limitation of conventional Rytov approximation. Scale bars: 10 μm

16. Computational cost of our method and BPM-based approach
First, we consider the complexity of the BPM-based approach. In the BPM case, 2𝑁 2D-

FFT is required for end-to-end propagation for each angle of incidence. Therefore, for the end-
to-end propagation for all angles of incidence, it requires a complexity of 𝑂(𝑁angle𝑁3log𝑁). 
The same complexity is necessary for backpropagation. The BPM-based approach repeats this 
computation  𝑁iter times for optimization. As a result, it requires a complexity of 𝑂(𝑁iter𝑁angle
𝑁3log𝑁).

Next, we consider the complexity of our approach, which first calculates a multiple-
scattering suppressed image from angle-scanned data. Similar to the forward process of the 
BPM approach, it requires a complexity of 𝑂(𝑁angle𝑁3log𝑁). Subsequently, we calculate the 
RI distribution for the multiple-scattering suppressed image using ADMM. In our 
implementation of pMSS-Rytov, 7 3D-FFT are required for each iteration, requiring a 
complexity of  𝑂(𝑁iter𝑁3log𝑁) for all iterations. As a result, the complexity of our approach 
is 𝑂 𝑁angle𝑁3log𝑁 +𝑂(𝑁iter𝑁3log𝑁). 
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